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The first four sections of the present paper deal with the problem in restricted formulation, 

i. e. we assume that the center of mass of the satellite moves as a material point along 
a circular Keplerian orbit. Assuming that the gyrostatic moment can have arbitrary con- 

stant values, we express the set of positions of relative equilibrium of the gyrostat satel- 
lite in the orbital coordinate system in a readily understandable geometric form. We 
then proceed to define the domains of stability and instability. 

The results obtained in Sects. 1-4 are evaluated in Sect. 5 from the standpoint of the 
unrestricted formulation of the problem. 

1, We begin by attaching to the satellite the coordinate system Gsiz,z, with its axes 
directed along the principal central inertial axes. 

Let us assume that the satellite consists of a solid hub and symmetric rotors rotating 
at constant relative angular velocities. The projections on the axes z2 of the moment of 
relative momenta of the rotors (the gyrostatic moment) are then constant, 

ki = COnSt (i = 1,‘,3) (1.1) 

In this case the altered potential energy of the gravitational and inertial forces acting 
on the satellite is given in the orbital coordinate system by the expression (see [l], p. 102) 

6~ = 9/&(A1~r2 + A,yl + A,yS2) - “/zo” (A&1” + AaS12 + Aa82) - 

- w(kri& f k,& + k&f 

Here o is the Keplerian orbital angular velocity, - A~ are the moments of inertia of 

the satellite and rotors relative to the axes xX; yz, pi are the projections on the same 
axes of the unit vectors y and B of the radius vector of the center of mass C; of the satel- 

lite and of the normal to the orbital plane, where 

$ = y? + yz” + $ = 1 (I.21 
x = dl + d-b -i d8 = O, ‘p = fp + pa” + p3” = 1 (1.3) 

By the Lagrange theorem ci?], the relative equilibria of the satellite correspond to the 
fixed points yio, pi0 of the function 1Y (yz, @i) under conditions (1.2). (1.3). We Can 
therefore express the equilibrium equations along with (1. 2), (1.3) by way of the Lagrange 
multipliers h, p, Y . We have 

at? / ayi = (P + 3A+o)yi f h#Ji = 0 (i = 1,2,3) ti.41 

ali / a& = liyi + (V - Aio)pi - ki z 0 (z= 1,2,3) (1.51 

v = 1Y I 0 + hX + ‘I& -t ‘lzvcp 

Let us set v = v. and yi I= yio (i = 1 ,2,3} subject to restriction (1.2) and solve sys- 

tern (1.3)-(X. 5) for p, h, pi, ki. 
Multiplying Eqs. (1.4) by yi and by hfii - 3Aiwyi and summing over L = 1 ,%s with 

allowance for (X.2). (1.3). respectively, we obtain 

714 
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r 3 
p=pLg=-30 ?L = ho = f 30 1 2 Ai?YiO %- (i Aiyi,$l’i2 (1.6) 

i=l t=, ic=l 

Making use of (1.6) for h, # 0, we infer from (1.4) and (1.5) that 

pi = pi, = 32 ( i .-ljYj: - “i) yio (i = 1,2,3) 

j=l 

ki = ki, = h,yi, + (V. - Ai Pi,, fi = ‘, ‘1 3, 

(1.7) 

(1.8) 

Values (1.7) here satisfy Eqs. (1.3). 
If 1, = 0. then Eqs. (1.4) are satisfied independently of pi . This is easy to see by 

considering the sum of the squares of the left sides of Eqs. (1.4) with allowance for(l.6). 
We can then take any values satisfying Eqs. (1.3) as our bit, and determine the quantities 

kio from (1.5). ki = kiO = (v,, - A,o) pi,, (i = i,2, 3) 

As we see from (1.6)-(1.8). the quantities pi0 do not depend on the quantity v. which 
affects only the choice of the gyrostatic moments kio and the stability of the equilibria. 
The quantity v. can be interpreted as the moment of momenta of the satellite relative 
to the normal to the orbital plane. This can be shown simply by multiplying Eqs. (1.5) 

by, pi and summing. 
The expression in square brackets in (1.6) is readily reducible to the form 

x(-42- .43Y~zo" ~3,,~ 

(123) 

which implies that it is nonnegative for all values of Yio which satisfy (1.2) and vanishes 

only if one of the principal central inertial axes of the satellite is directed along’i, in 
the equilibrium position. Hence, system (1.3)-( 1.5) is solvable for P, a, -pi, ki for all 
values of v0 and yio related by expression (1.2). 

This means that the attitude of the gyrostat satellite relative to the earth in the equi- 

librium position is arbitrary. Moreover, if ho # 0, i.e. if V does not coincide with a 
principal central inertial axis of the satellite, then each such direction, or (which is the 
same thing) each point of the unit sphere (1.2), is associated with two dynamically equi- 
valent equilibrium positions corresponding to different signs of ho and differing by a 180” 
rotation about y; the kio are of different sign. If ho = 0, i.e. if a principal centtal 
inertial axis of the satellite is directed along y then the equilibrium position is arbitrary 

(as regards the angle of rotation about ‘f). 
Let us compare the above set with the two one-parameter families of relative equilib- 

rium positions of a gyrostat satellite investigated in 111, 

~7~~0, yz=O, y3=1, br=sin0, &=;cOs6, 83-0 (l-9) 

?, = 0, ?3 = - sine, y3 = CO&, p1 = 0, B2 = ~0~8, P3 = sine (1.10) 

Availing ourselves of the arbitrary choice of the coordinate system Gs,r+, and of the 
parameter 6 equal to the angle between the x -axis and the normal to the orbital plane, 
we can make the three following statements. 

Families of relative equilibrium positions (1.9), (1.10) correspond in our interpretation 

to the points of the great circles yio = 0 on unit sphere (1.2). 
If the ellipsoid of inertia of the gyrostat satellite is symmetric, then families (1.9) 

and (1.10) exhaust the entire set of relative equilibrium positions of the gyrostat satellite. 

Family (1.9) exhausts all the possible equilibrium positions in which the principal 
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central inertial axes of the satellite are directed along y , i.e. the case where h, = 0. 
Since the latter case is investigated in detail in [I], we shall assume throughout the 

remainder of our discussion that ho # 0. 

2, The steady motions of the gyrostat satellite considered above are stable by virtue 
of the Lagrange and Kelvin theorems [2] provided the values of’ yi,,, &, minimize the 
function W under conditions (1.2). (1.3). 

Let us consider the three matrices 

Ai) = 1) a,$) 1) (a,p =: a(g); p, q = 1 ,...., 9; i=i,2,3) 

consisting of the second partial derivatives of the function’ v and differing by virtue of 

cyclic permutation of the subscripts (123) in the sequence of variables h, u, v, yr, 7$, ys, 
Bs, or, 8s with respect to which the differentiations are carried out. The notation 

J = Alym* + 4vmZ + -&~,,a (2.1) 
Qi = Vg - Aim, bi = 3d40 + i.~e = 30 (Ai - J) (i = i,2,3) 

enables us to express the nonsymmetrlc elements $4 with the numbers p < q in the form 

a1,(‘) Z a,,(‘) = 710. .,fi) = a,,(‘) = +I$,,, fZ# = Q,&‘) = ?r’so 

.&) CT Q#f = &o, Q# = Q=(l) = fj*, Q#) = Q=(l) = 888 

Q,,(I) ZZ bl, Q,,(‘) = f,,, &#) = b,, Q4,@’ = Q$) = Q,(l) = &, 
(2.2) 

a,,(‘) = al, Q$p = us, up = a, 023) 

(the cyclic permutation (123) does not extend to the subscripts in a%) 

By virtue of (1.3) the quantities blot flzo, &, cannot vanish simultaneo~ly. Let 
pi0 # 0 (i is fixed) in this relative equilibrium position. We can now write the sufficient 
conditions for the stability of this equilibrium in the form [3] (*) 

A@) = #+&x > 0, A,(+) > 0, A,(‘) = A = a$ + bvs + c > 0 (2.31 

Here the A,?) denote the principal diagonal 1 th order minors with signs opposite to 

those of the matrix A@‘. 

Conditions (2.3) are the broadest stability conditions obtainable from the conditional 

fixed-sign property of the quadratic form corresponding to the second variation. 
Kelvin introduced the notions of secular and temporary stability r2]. In this sense con- 

ditions (2.3) guarantee secular stability. If conditions (2.3) are violated and the sign of 
at least one of the inequalities is changed to its opposite, then the equilibrium is unstable 

in the secular sense. 
Expanding the determinant A in the first three rows and columns and applying (1.2). 

(1.3),(1.7),(2,1) and (2.2), we obtain 

‘) In proving the conditions [3] for a conditional minimum of the function IV we require 
that the determinant consisting of the first k columns in the Jacobi matrix corresponding 

to k constraints (1.2), (1.3) be different from zero. However, the theorem remains valid 
if we assume that the matrix consisting of the first k + 1 of its columns is of the rank k. 

This is because the principal diagonal minors A>‘*’ beginning with the (2k + l)-th order 
which occur in its formulation are not altered by equivalent permutations of the first 
2k + 1 rows and columns in the matrix A(“. 
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3 

A = 2 b,aj,,2 2 802as~ + i ajajo' 2 TloW3 

j=l (123) i-1 (123) 

- Aosciajr,,,2+ i bjfijd) (2s4) 
j=l j-l 

810 = j%orso - psoT?o= - Soho-’ (& - ‘-fs) T2oTao (123) 

Recalling expressions (2.1) for ai, we infer from this that 

(I = i biCti@‘, l b=--a 2 Pxo7 (AZ 4 As) + 2 rxo%bs - ho% 
i=1 1123) (123) 

c = 02a 2 $lozA2 As - o i Aiai02 2 ylo2bzbs + o (4J -3 i A&&2) ho2 (2.5) 
(123) i=l (123f i=l 

By virtue of (1.6). (1.7), (2.1). (2.4) the quantities a, b and c are rational functions 
of 0, &, yiiJ. 

If @rot fizo, & # 0 simultaneo~ly for some eq~librium position, then, as we infer 

from 131, conditions (2.3) for i = 1,.2,3 are mutually equivalent. In other words, if con- 
ditions (2.3) are fulfilled for some single value of i, then they are fulfilled for any 
i = 1,2,3. They are also equivalent to the formally symmetric conditions 

a > 0, As(l) + A&@ + A&s) = dh / dv; > 0 3 A,6 (2.6) 

In fact, it is self-evident, that fulfilment of conditions (2.3)(for i = 1,2,3) impties ful- 
filment of conditions (2.6). Conversely, fulfilment of conditions (2.6) implies fulfilment 
of at least one of.the inequalities A*@) > 0 (i = 1.1,3) (let us say Ago) > 0). Then, 
clearly, conditions (2.3) are fulfilled for i = 1, and by virtue of their equivalence, for 
i = 2,3 as well, 

Let us show that conditions (2.6) are applicable for arbitrary values of &,, i.e. even 

when some of the @+a vanish. For example, Iet pro # 0, and let conditions (2.3) be ful- 

filled for i - i , This means (see f3)) that A8ii) > 0 (i = 2,3), and that conditions 

(2.6) are fulfilled. 
Conversely, let conditions (2.6) be fulfilled for an equilibrium position for which 

some of the Bi, are equal to zero. Under the above a~umptions we can always alter the 
satellite parameters (kio or yiO) so slightly and continuously that (a) all the quantities 
&O differ from zero, and (b) conditions (2.6) are preserved in continuity in the altered 

equilibrium position. The altered equilibrium position is then stable (in the secular 

sense). By virtue of the Poincare theory of equilibrium bifurcations [S] this means that 
the initial equiIibrium position (A # 0) is also stable. 

Finally let us rewrite conditions (2.6) for the stability of the relative equilibria of the 
gyrostat satellite in the form 

a>% Vo>% (2~~ = b + j’-bs - 4ac) (2.7) 

Here v2 is the largest of the roots vlrZ of the equation A = 6. The discriminant bz- 
- 4ac of this equation is nonnegative. Otherwise we would have A # 0 for all v. when 

a+@, and the sign A would be the same as that of a. This in turn would imply (by 
the second condition of (2.6)) that the degree of instability would differ for vg = f M 
(for a > 0 - 0 and 2, for a < 0 - 1 and 3 ; M is a sufficiently large positive number). 
This contradicts the bifurcation theory @]. 

For example, for yr,, = &, = 0 the determinant A breaks down into the rational fac- 
tors 
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3ld (A, - Azyzo" - A,y,,y(v, - Alo) - 96P(A, - A,)"y,,y$ 

v0 - 0 (A zYzo2 c ~3v303) - 30 (A 2 - A31 (vzd? - y3dLf (2.8) 

Conditions (2.7) are equivalent in this case to those obtained by Rumiantsev ( [l], p. 

103) and are of the form Al _ A 2 uz02 _ A3Y30~ , 0 vg > Yl, To > y2 

where YE and v2 are the roots of expression (2.8) linear in ~0. 

3, Without restricting generality we can assume that Al > A, > 4s 
Expression (2.5) for a can be expanded into the factors 

a = 3703h,-2 (J - A,)(J - d&J - A ?) 

The sign of the quantity a is determined by the sign of the factor A, - J. The equa- 

tion A, - J = 0 defines the two great circles 
I____- 

-r/n? - A3 73 & Jfc/- tl - .,I: Tl = 0 (X.l) 

on sphere (1.2). 
Great circles (3.1) divide sphere (1.2) into four domains. The quantity a is positive 

in the domains containing the points ya = f i and negative in the domains containing 
the points ~1 = rtt_ i ; this applies everywhere except at the points y3 = & i and y1 = 

= & 1 themselves, where a = 0. For A, = A, the above great circles merge with the 
great circle yj = 0 , and a. is positive everywhere on sphere (1.2) except at this circle 
and at the points y3 = + 1, For AZ = Aa th ey merge with the great circle ~1 = 0 and 

a is negative everywhere on the sphere except at this circle and at the points ~1 = & i. 

According to stability conditions (X.7), in those domains where a > 0 the relative 
equilibrium positions are stable if vg > VZ and unstable in the secular sense if ‘v. < x’~. 

In those domains where a < 0, the equilibria are unstable in the secular sense for all 2’0. 

Moreover, the satellite can be temporarily stable if the degree of instability is even. 
which is the case if A > 0 @]. This happens in the domains n < 0 for vi < ‘v,, < 2;% 

and in the domains where a > 0 for v. < ~1. 

If the degree of instability is odd (if 6 < 0) the equilibrium is unstable [2]. This is 
possible in the domains where a < 0 for v. > vz and ‘vg < v1 and in the domains where 

a > 0 for v1 < vO < v2. 

4, Let us consider the case where some of the rotors rotate at constant angular velo- 
cities relative to the hub and the remaining rotors (or all of them) rotate about their 

own axes, i. e, where the forces acting on these rotors do not produce moments relative 
to their axes, so that the projections of the absolute angular velocities of the rotors on 

their axes remain constant. This implies the constancy of the projections of the gyro- 
static moment vector on the axes xi; the gyrostatic moment is equal to the sum of the 
moments of momenta of the relative (i. e, relative to the hub of the satellite) motions 
of the rotors which rotate at constant regular velocities and of the axial moments of 

absolute momenta of the free rotors, 
pi’ -z const (i = 1,2,3) (4.1) 

All of the rotors in steady motions rotate at constant angular velocities, and 

(4.2) 

where the k; have the same meaning as in Sect. 1, i.e. they are equal to the projections 
of the vector of the sum of moments of relative momenta in the given steady motion ; 
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J,, 41. ls2, ls3 are the axial moments of inertia and the direction cosines of the free- 

rotor axes. 
The potential energy of the reduced system obtained by the elimination of the cyclical 

coordinates corresponding to the free rotors takes the following form in the case (4.1) 

(see [l], p. 109) : 

By making use of the relations (4.2) we can readily show that 6FY* = 6W. This means 

that the sets ofsteady motions in cases (1.1) and (4.1) coincide [l]. 
The second variation of the function IV* differs from the second variation of VV by a 

positive term, 
6?Y* = 6V + 02 2 Js (/&%$ 1,,sp2 + 43683)2 

This means that if conditions (2.7) of the condition of positive definiteness of IV%’ 

are fulfilled, then the function TV* also has a conditional minimum, and (by the Routh 
theorem [4]) the steady motions of the gyrostat satellite are also stable provided condi- 

tions (2.7) are fulfilled in case (4.1). This was proved in [5] for the case of a single 

rotor. 
However. the conditions of a conditional minimum of the function W* can also be 

obtained directly. Exactly as in Sect.2 they can be reduced to the form 

where 
a >O, YIJ > v2* (2av2* = b* + Jfb*2 - 4ac*) (4.3) 

h (1231 

Conditions (4.3) are broader than conditions (2.7), so that for a > 0 we must have 
v2* < v2 (similarly, for a < 0 we must have v1 * < vl). The form of conditions (4.3) 
implies that all of the conclusions of Sect. 3 remain valid in case (4.1) provided we 

replace vl, \‘2 by VI*, v2*. 

5, Now let us consider an unrestricted formulation of the problem. We begin by in- 
troducing the fixed coordinate system 061 c2,Es with its origin at the attracting center. 
We also attach the coordinate system Gylyzy3 in addition to the system GzLz2z3 (Sect. 
1) at the center of mass G of the satellite. The axis ~3 is directed along OG, the axis 
YI is parallel to the plane 0t3& and is directed in the direction of motion. All of the 
systems are right and rectangular. ?he position of the satellite hub in the coordinate 
system O&g2c3 is defined by the spherical coordinates R, X, ts of the center of mass G 
of the satellite, 

c1 = Rcosx sina, c2 = Rsinx, F$ = R cosx coscr 
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and by the cosines yi, & (i = 1,2,3) of the angles between the axes zi and the axes ~3 
and E, , respectively. The quantities yi, & and x are related by expression (1.2) and 

the re1ations x0 = y& + y.& + ys& - sinx = 0, fp=812+B2s+Bsz=i (5-i) 

The altered potential energy which results if we ignore the cyclical coordinate CI in 

case (1.1) turns out to be of the form ( [l]. p. 125) 

IV (vi* flit X, R) = ‘~~~‘~~ - u 

K=k- kA - k,B, - k,f’,, S = MR2cos2x + Al/h2 + Aa@2 + -‘k$z 

u = fMR-’ - SlzfR-3[A& + A,ys2 + As@ - 11s(A~+4+&)I 

Here U is a function of the gravitational forces, f is the gravitational constant, &Z is 
the mass of the satellite, k is the constant moment of momenta of the satellite relative 
to the axis OF,*, and the remaining symbols have the same meaning as in Sect. 1. 

Let us introduce the function V~ = I+,~ i o + hXa + rizP9 + iizvcp 

where h, p, Y are undetermined Lagrange multipliers and w is some arbitrary constant 

which we shall interpret (see (5.3)) as the Keplerian circular angular velocity: w2 = 

= f (R”)-s. By the Routh theorem for determining steady motions, in addition to (1.2). 
(5.1) we also have the equations 

W / dyi = (3fR-%-‘Ai + p)yi + h& = 0 (i = 1,2,3) 
av”/ afli = hyi + (Y - Wo-‘Ai)& - Qo-‘ki = 0 (i = 1,2,3) (5.2) 

tW” f ax = Q2MR2simCosx - hcosx = 0 

L%+ f dR = -QB”MRcos% + JMR-i - “jUfR-4[AlyIa 4 4~2 + 49 - 
--‘Is (AI + A, + As)1 = 0 

(Q f: K / S is the true orbital angular velocity of the satellite ; it is related to the quan- 

tity k) . 
For fixed values Y = va, yi = yio (i = 1,2,3) related by expression (I.. 2), system (5. l), 

(5.2) has solutions of the form 

h = ~0, P = $‘, pi. = l&O, ki = ki”, B = fz”, x = x0, R = R” =I f%-“is (5.3) 

As in Sect. 1 we obtain s 

?,,“a cos2 x0 = 002 ( 2, Ai2ri; - Js) , ~~=-3wJ -?“h”sinx” (5.4) 

i=l 
and for ho # 0 (the case h” = Cl corresponds to the case h,, = 0 and is considered in [l], 

hoi = -(3wAi + p”)(~o)-‘ye,, ki” = o ( QO)-l [h”yi, $- (~0 - Q”O-‘di)Bi’] 
(i = i,2,3) (5.5) 

For convenient comparison of the orders of smallness of the various quantities we 

assume that they have all been divided by such quantities as M, w, Ai + A, + As 

and are therefore dimensionless. The symbols E and ~~ denote various quantities of the 
orders 1 ,I R and # / R2 (1 is the characteristic dimension of the satellite ; E’ is not neCeS- 

sarily a positive quantity). 
The last two equations of (5.2) with allowance for (5.4). (5.5) define the quantities 

x0 and Q” ; here 11’ # 0 for h” + 0, and 

x0 = E2#0, Q” = 0 + aa (5.6) 

Expressions (5.4) and (5.5) with allowance for (5.6) now yield 
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1’ = ho (1 + E’), p” = ~0 + LJ~~Y Pi” = Pi0 + 9, ki” = kio + (I+ VO)E’ 
(i = 1,2,3) (5.7) 

We infer from (5.6) and (5.7) that the steady motions of the gyrostat satellite in case 
(1.1) in the unrestricted formulation of the problem differ from the positions of the rela- 

tive equilibria considered in Sect. 1 by quantities of the order of e2, which is very small 
for real earth satellites. 

Since x0 # 0 for ho # 0, it follows that in none of the steady motions considered here 
for h” # 0 does the orbital plane of the center of mass of the satellite pass through the 
attracting center (such motions in the case 710 = 0 are investigated in more detail in 

[S] ). The displacement of the orbital plane is equal to R” sin x0 and is of the order el. 
Thus, steady motions [l] of a gyrostat satellite in which one of its principal central 

inertial axes is directed along Y (the case ho = ho = 0) while the center of the circular 

orbit coincides with the attracting center 0 are in this case eXCeptiOnal. 

We can investigate stability by considering, as in Sect. 2, the three matrices 

A(iL) =I] a$) [I (a$) = a$); p, q = 1,. . . , 11; i = 1, 2, 3) 

of the second partial derivatives of the function v” with respect to the variabies 

A, PL, v, 1’1, ~27 ~31 h B2, fi3, x, R (123) 

For the derivatives of the function Q = K / S we readily obtain the relations 

aa/ayi=O, asz/afii= e2, m/ax= eat aalaR= e (5.6) 

BY virtue of (5.2), (5.6), (5.7), (5.8) the elements or,($) with the numbers P < q < 9 
differ only slightly from values (2.3) ; the nonzero elements turn out to be 

a(ll;E) zz a$) z Tro, 
%3 

(16) = .p, =. reo, ap= ag"q3 

&~La~~l_ fy, 
14 

ag'= ny=p30 .ULa(lELp30 
(5.9) 

' 16 39 

J4y) = bl + e3, a(51;) = bz + ea., a$:) = b3 + e2, ag) = ag) = g) = ~0 

a$) = aI + (1 + vo)2 ez, ag’ = a2 + (1 + v0)2e2, Q(;gE’ = a3 + (1 + vo)-e3 

&') 
‘8 ’ Jly), a$) - (1 +vo)h2 1133) 

The nonzero elements of the last two columns of the matrix ACi’) are of the fcrm 

Jie) 1. 1. = Mo2R02(1 + e2), CZ’,~:‘,, = Mo2(i + a*) 

a$$; = - cosxD; (ie) (ie) 
=7 10' %lO~ 

a!$: c (i + v0)2e2 (5.10) 

(ir) (in) &c) ,(ic) 
P311' O411' 511' 611' 

a$;, - E; 
(ir) (ir) ,(iE) 

U711' Qa11* ,,l-(l+vde 

From (5.9). (5.10) we readily obtain the following relations for the principal diagonal 
minors with signs opposite to those of the matrices A@): 

D7@) = A,@) + 82, D&i) = A,ci) + (i + y,,) e2, Deci) = A,ci) + (1 + VO)~E~ 

D,o(i) = Mo2R02 [AgCi) + (i + v$e2], Dll@) = M’wR”2 [ A81i) + (1 + vo)*e2] 

By virtue of the Routh theorem [4], we can apply the conditional minimum criterion 
[3] for $i” # 0 (i is fixed) to express the stability condition in the form 

D,(i) > 0 , . . .> &I@) > 0 
or 

A,O) f e2 > 0, Aa@) + (1 + vo)e2 > 0, A,@) + (1 + vo)2e2 > 0 (5.11) 
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As in Sect. 2, conditions (5.11) can be reduced to the form 

n -5 E’Z > 0, V”>VZO (2av2” = b + r/b”- - inc -; (t + vz,) t?) 

A similar situation obtains in case (4.1). 
Thus, to within terms of the order e3 the geometric interpretation of the set of steady 

motions given in Sects. 1 and 3 and also stability conditions (2.7) and (4.3) for cases 
(1.1) and (4.1)‘ respectively, are also valid for the unrestricted formulation of the prob- 

lem. Conditions (2.7) and (4.3) are the stability conditions with respect to ?i;i, pi, R. % 
I’~‘, pi’, R’, x’, 6’ with allowance for the perturbability of the orbit. 

6, Stability conditions (2.7) and (4.3) remain valid in the case where the satellite 

contains, in addition to the rotors, cavities completely filled with liquid [7]. 
The author is grateful to V. V. Rumiantsev for his comments and useful suggestions. 
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The dynamics of an electromagnetically driven electromechanical trigger regulator 
with two pulses per period is considered. The nonlinear third-order differential equation 
is investigated by the method of point transformations. The decomposition of the para- 
meter space into domains whose points correspond to various qualitative structures of 
the phase space is established. The domains of existence of several stable periodic mo- 

tions in the parameter space are isolated. 


